Dimensionality Reduction Through Classifier Ensembles Nikunj C. Oza University of California Berkeley CA Kagan Tumer NASA Ames Research Center Caelum Research Moffett Field, CA May 1, 2001 #### Abstract In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of large run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal components analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal components analysis on both real and synthetic datasets. ## 1 Introduction In data mining, one often deals with large datasets with a large number of input attributes [14, 23, 25]. Performing machine learning directly on such datasets is typically impractical for many reasons. Generally, for such data sets: • Learning algorithms are slow due to the large number of parameters that need to be learned; - Many attributes are irrelevant for the task at hand, resulting in wasted effort, overfitting, or worse, learning spurious relationships; and - The number of training examples needed to produce a meaningful model over the full attribute space is prohibitively large—this is known as the "curse of dimensionality" [7]. In an attempt to alleviate some of these problems, feature selection or feature extraction is often used prior to learning. Feature selection is the act of choosing a subset of the original features according to some criterion for deciding how relevant each feature is for the task at hand. However, these methods, when applied to classification problems, typically choose features according to the criterion of how useful they are at discriminating among all classes, or simply choose features that have high variability with little or no regard for their discriminatory power. In many real datasets, however, there are features that are very useful at distinguishing one class from the remaining classes. Feature extraction involves calculating new features from the original ones with the intent of keeping the "salient information" while reducing the dimensionality of the data [63], often resulting in new features that are not intuitively understandable. Furthermore, many unsupervised feature extraction methods such as Principal Components Analysis (PCA) disregard class information and, therefore, are not suited for finding features that are useful for classification. In this paper, we present *input decimation*, a method that chooses different subsets of the original features for use in classifiers that are part of an ensemble. This method not only reduces the dimensionality of the data, but uses this dimensionality reduction to reduce the correlation among the classifiers in an ensemble, thereby improving the classification performance of the ensemble [58, 61] (the relationship between ensemble performance and correlation among its components has been extensively discussed [2, 31, 43, 59]). In this article, we present details of this method, along with extensive simulations on both real and synthetic data sets showing that input decimation reduces the error up to 90% over single classifiers and ensembles trained on all features, as well as ensembles trained on principal components. In this study we use the "averaging" ensemble² to compare ensembles with and without input decimation, rather than compare input decimation to other more sophisticated methods such as bagging and boosting. This allows us to isolate the effects of removing features, which is the goal of this paper. We select the averaging ensemble because, due to its simplicity, it provides a clear comparison of the results with and without input decimation. Ensemble methods such as bagging, boosting, and stacking (discussed in Section 2) can be used in conjunction with input decimation—in that sense, input decimation is orthogonal to those other methods. However, the conjunction of input decimation with these other methods is outside the scope of this paper and we plan to study this in the future. ¹In this article we restrict attention to classification problems. $^{^2}$ Given a new example, the averaging ensemble returns the average of the outputs of the base classifiers applied to that example. See Section 3 for a more detailed explanation. In Section 2, we briefly review known methods for dimensionality reduction and ensemble methods, and discuss an ensemble framework that quantifies the need for correlation reduction among the classifiers in an ensemble (see [59] for further details). In Section 3 we present input decimation, and in Section 4 we provide experimental results on three data sets from the PROBEN1 benchmark [51] and the UCI Machine Learning Repository [8], along with several synthetic datasets. We conclude with a discussion of the benefits and limitations of input decimation and highlight directions for future research. ## 2 Background As we mentioned above, input decimation uses dimensionality reduction to reduce the correlation among classifiers in an ensemble, yielding superior ensemble classifier performance. Because input decimation is both a dimensionality reduction method and an ensemble method, below we present brief backgrounds on both. Furthermore, to emphasize the connection between these two concepts, we summarize a framework that shows that reducing the correlation among classifiers (e.g., through input decimation) in an ensemble improves classification performance. ## 2.1 Dimensionality Reduction Most of the known dimensionality reduction methods are examples of one of two different classes of methods: feature selection and feature extraction. In feature selection one chooses some criterion (e.g., statistical correlation or mutual information) to decide how relevant each feature is for the classification or regression task and chooses some subset of the features according to this criterion [3, 9, 10, 19, 32, 40]. In filter methods for feature selection, the data with the chosen subset of features is then presented to a learning algorithm. In embedded methods, feature selection is done as part of the learning algorithm. Decision-tree learning (e.g., [52]) is one example in which an embedded feature selection method is used—attributes are chosen based on information gain at each node in the decision tree. In wrapper methods, the learning algorithm itself is run with various subsets of features and the feature subset yielding the best performance is chosen [37]. However, most of these feature selection methods attempt to choose features that are useful in discriminating across all classes. One exception is [39] that breaks an L-class problem into $\begin{pmatrix} L \\ 2 \end{pmatrix}$ class problems and performs feature selection within each of those problems. In many real-world problems, there are features that are useful at distinguishing whether an instance is of one particular class but are not useful at distinguishing among the remaining classes. Most feature selection algorithms also choose individual features in a greedy manner, i.e., they do not account for the interactions among various sets of features. Methods that attempt to overcome that (e.g., [38]) are computationally more expensive, a problem that is accentuated Figure 1: PCA and classification: The first principal can provide a good discriminating feature (left) or a poor one (right), since the class membership information is not used. The "x" points and "o" points represent instances of two different classes. by large datasets. Feature extraction algorithms such as Principal Components Analysis (PCA) [7, 33, 48] or Independent Component Analysis (ICA) [30] reduce the dimensionality of the data by creating new features. Linear PCA, perhaps the most commonly used feature extraction method, creates new uncorrelated features that are linear combinations of the original features. The aim of PCA is to find the set of features on which the data shows highest variability. However, it is generally difficult to intuitively understand these new features. Furthermore, PCA gives high weight to features with higher variabilities whether they are useful for classification or not. In other words, because unsupervised feature extraction methods such as PCA do not use the class labels to create the new features, they often yield features that are not useful for classification [7]. Figure 1 demonstrates the perils of not using class information. The left half of the figure shows a case in which PCA works effectively. In this case the first principal component corresponds to the variable with the highest discriminating power, i.e., it does a good job of separating the "x" class from the "o" class. The right half shows a similar dataset (similar data distribution and linearly separable). However, because the first principal component is not "aligned" with the class labels, selecting this component is a poor choice for this problem. Indeed, an input set consisting of only the first component would provide practically random decisions on this data set. These examples show that using PCA for classification problems is a
dangerous process, as there is little information to determine the amount of discriminating information that is kept in the principal components that account for most of the variability in the input data. There are variations on PCA that use local and/or nonlinear processing to improve dimensionality reduction [16, 35, 36, 46, 47, 56]. One such method uses vector quantization to create several cells, and performs PCA within each cell [35]. Each example is then coded using the principal components for the closest cell. Although these methods implicitly account for some class information and therefore are better suited than global PCA methods for classification problems, they do not directly use class information. #### 2.2 Ensembles and Correlation #### 2.2.1 Ensemble methods A classification task consists of determining the class membership of a pattern, based on an input vector consisting of features describing that pattern. Learning generally involves using training examples—patterns with known class memberships—to construct a classifier that generalizes, i.e., responds correctly to novel patterns. However, there are normally many possible generalizations based on a finite training set [41]. For example, when training a feed-forward neural network classifier, different initial weights, learning rates, momentum terms, and architectures (e.g., number of hidden layers and hidden units, connections, single vs. distributed output encoding, etc.) affect how the classifier performs on novel examples. Choosing a single classifier, even the "best" classifier in terms of generalization error, is not necessarily optimal, because potentially valuable information contained in the other classifiers may be discarded. This observation leads to the idea of classifier ensembles, where the outputs of multiple classifiers are "pooled" before a class label is assigned [11, 26, 62]. In constructing an ensemble, two issues arise: the method by which the outputs are combined, and the method by which the ensemble's individual classifiers (often referred to as base classifiers) are constructed. (See [17, 57] for a review of ensemble methods.) Plurality voting is one of the most basic methods of combining [4, 26]. If the classifiers provide probability values, simple averaging is an effective ensemble method and has received a lot of attention [42, 50, 59]. Weighted averaging has also been proposed and different methods for computing the weights of the classifiers have been examined [6, 27, 31, 34, 42, 44]. Such linear combining techniques have been mathematically analyzed in depth [12, 27, 50, 59]. Non-linear ensemble schemes include rank-based combining [1, 29], belief-based methods [54, 64, 65], and order-statistic ensembles [60]. In constructing the individual classifiers to be combined, many methods are used, including simply training all classifiers as if they were stand-alone classifiers and then combining them into an ensemble. However, one can also try to actively promote some diversity among the classifiers (we elaborate on the reasons for this in the next section). One such method partitions the training set much like one does when using cross-validation and trains one classifier on each partition [28, 59]. Another method, known as bagging [13], constructs several sets of m training examples drawn randomly with replacement out of the original set of m training examples and trains one classifier using each of these resampled training sets. The classifiers are combined using plurality voting. Boosting [24] is similar to bagging, except that the process of drawing training examples and constructing classifiers is done iteratively [21, 22, 24]. A probability distribution on the training examples is maintained and training sets are drawn with replacement according to this distribution. After a classifier is constructed, the probability distribution is adjusted so that examples that were misclassified are more likely to be chosen for use in training the next classifier than examples that were correctly classified. Another way of constructing a set of complementary classifiers is to give each classifier a different output target. One such method is error-correcting output coding [18]. In this method, the set of classes is randomly partitioned into two subsets $(A_l \text{ and } B_l)$ T times (that is $l \in \{1, 2, ..., T\}$), and each of the T classifiers is assigned one partition. The Ith classifier's copy of the training set is relabeled as follows: the example is considered positive if the class of that example is in B_l and negative if the class is in A_l . Of course, because the data is relabeled differently for each classifier, each classifier will be different. Each of these methods relies on reducing the correlations among the classifiers that are part of an ensemble. We now summarize a classification framework that explicitly connects the reduction in the classification error of an ensemble to the correlation among the constituent classifiers in that ensemble. #### 2.2.2 The Need for Correlation Reduction In this section, we demonstrate that an ensemble has less additional error (beyond the Bayes error obtained by the best possible classifier) than a single classifier, and the decrease in error is proportional to the reduction in correlation among the members of the ensemble. In this article we focus on classifiers that model the *a posteriori* probabilities of output classes. Such algorithms include Bayesian methods, and properly trained feed-forward neural networks [53, 55]. Therefore, we can model the *i*th output of such a classifier as follows (details of this derivation are in [58, 59]): $$f_i(x) = P(C_i|x) + \eta_i(x),$$ where $P(C_i|x)$ is the true posterior probability of the *i*th class given instance x, and $\eta_i(x)$ is the error associated with the *i*th output—the difference between the true and learned posteriors. Given an input x, if we have one classifier, we classify x as being in the class i whose value $f_i(x)$ is largest. Instead, if we use a ensemble that calculates the arithmetic average of the outputs of N classifiers $f_i^m(x)$, $m \in \{1, ..., N\}$, then we get an approximation to $P(C_i|x)$ as follows: $$f_i^{ave}(x) = \frac{1}{N} \sum_{m=1}^{N} f_i^m(x) = P(C_i|x) + \bar{\eta}_i(x), \tag{1}$$ where: $$ar{\eta}_i(x) = rac{1}{N} \sum_{m=1}^N \eta_i^m(x)$$ and $\eta_i^m(x)$ is the error associated with the *i*th output of the *m*th classifier. Now, the variance of $\bar{\eta}_i(x)$ is given by [59]: $$\begin{split} \sigma_{\bar{\eta}_i}^2 &= \frac{1}{N^2} \sum_{l=1}^N \sum_{m=1}^N cov(\eta_i^l(x), \eta_i^m(x)) \\ &= \frac{1}{N^2} \sum_{m=1}^N \sigma_{\eta_i^m(x)}^2 + \frac{1}{N^2} \sum_{m=1}^N \sum_{l \neq m} cov(\eta_i^l(x), \eta_i^m(x)). \end{split}$$ If we express the covariances in terms of the correlations $(cov(x, y) = corr(x, y)\sigma_x\sigma_y)$, assume the same variance $\sigma_{\eta_i}^2$ across classifiers for each output, and use the average correlation factor among classifiers, δ_i , given by $$\delta_{i} = \frac{1}{N(N-1)} \sum_{m=1}^{N} \sum_{l \neq m} corr(\eta_{i}^{l}(x), \eta_{i}^{m}(x)),$$ (2) then the variance becomes: $$\sigma_{\bar{\eta}_i}^2 = \frac{1}{N} \sigma_{\eta_i(x)}^2 + \frac{N-1}{N} \delta_i \sigma_{\eta_i(x)}^2 = \frac{1 + \delta_i(N-1)}{N} \sigma_{\eta_i(x)}^2.$$ (3) So we have obtained the variance of the ensemble as a function of the variances of the base classifiers. We would like to compute the variances of the decision boundaries obtained by the ensemble and the base classifiers. We can show that the variance of the decision boundary between classes i and j is $$\sigma_{b^{ave}}^2 = \frac{\sigma_{\eta_i}^2 + \sigma_{\eta_j}^2}{s^2} \tag{4}$$ where $s = (p_i(x) - p_j(x))^2$. We would like to use this result to get a distribution on the decision boundary of the classifier. Figure 2 shows the true posterior probabilities of two classes C_i and C_j (the solid lines), the posteriors obtained by a non-ideal classifier (the dotted lines), the Bayes error region (the lightly-shaded area) which depicts the Figure 2: Decision boundaries and error regions associated with approximating the posterior probabilities. The solid lines are the true posterior probabilities of classes C_i and C_j . The dotted lines are the approximate posterior obtained by a non-ideal classifier. The lightly-shaded area is the Bayes error. The darkly-shaded area is the additional error obtained by a non-ideal classifier. minimum achievable error, and the additional error (the darkly-shaded area) obtained by a non-ideal classifier because its decision boundary is offset by b relative to the optimum boundary. Defining A(b) to be the added error as a function of the boundary offset, we can define the expected added error, E_{add} , to be $$E_{add} = \int_{-\infty}^{\infty} A(b) f_b(b) db \tag{5}$$ where f_b is the density function of b. If we assume that the $\eta_i(x)$'s are distributed according to $N(0,\sigma_{\eta_i}^2)$, then one can show that b has zero mean and variance $\sigma_b^2 = \frac{2\sigma_{\eta_i}^2}{s^2}$ and $E_{add} = \frac{s\sigma_b^2}{2}$. Similarly, if the $\bar{\eta}_i(x)$'s are distributed according to $N(0,\sigma_{\bar{\eta}_i}^2)$, then one can show that the decision boundary b^{ave} of the averaging ensemble has zero mean and variance $$\sigma_{b^{ave}}^2 = \frac{\sigma_{\bar{\eta}_i}^2 + \sigma_{\bar{\eta}_j}^2}{s^2} \tag{6}$$ $$= \frac{1}{s^2} \left(\frac{1}{N} \sigma_{\eta_i(x)}^2 (1 + (N-1)\delta_i) + \frac{1}{N} \sigma_{\eta_j(x)}^2 (1 + (N-1)\delta_j) \right)$$ (7) $$= \frac{\sigma_{\eta_i(x)}^2 + \sigma_{\eta_j(x)}^2}{Ns^2} + \frac{N-1}{N} (\delta_i \sigma_{\eta_i(x)}^2 + \delta_j \sigma_{\eta_j(x)}^2). \tag{8}$$ Since the noises between classes are i.i.d., we get $$\sigma_{b^{ave}}^2 = \frac{1}{N} \sigma_b^2 + \left(\frac{N-1}{N}\right) \frac{2\sigma_{\eta_j(x)}^2}{s^2} \frac{\delta_i + \delta_j}{2}.$$ (9) Based on this
variance, we can compute the variance of the decision boundary and, generalizing this result to the classifier error, we obtain the relationship between the error of the ensemble and that of an individual classifier: $$E_{add}^{ave} = \frac{s}{2} \sigma_{b^{ave}}^2 \tag{10}$$ $$= \frac{s}{2}\sigma_b^2 \left(\frac{1+\delta(N-1)}{N}\right) \tag{11}$$ $$= E_{add} \left(\frac{1 + \delta(N-1)}{N} \right) \tag{12}$$ where $$\delta = \sum_{i=1}^{L} P_i \delta_i \tag{13}$$ and P_i is the prior probability of class i. Equation 12 quantifies the connection between error reduction and the correlation among the errors of the classifiers. This result leads us to seek to reduce the correlation among classifiers prior to using them in an ensemble. In the next section we present the input decimation algorithm which merges dimensionality reduction and correlation reduction to provide classifier ensembles. # 3 Input Decimation Unlike methods such as bagging and boosting which work by using different subsets of *input patterns*, input decimation focuses on subsets of *input features*. Intuitively, input decimation decouples the classifiers by exposing them to different aspects of the same data. This method trains L classifiers, one corresponding to each class in an L-class problem. For each classifier, the method selects a subset of the input features according to their absolute correlation to the corresponding class³. The objective is to "weed" out all input features that do not carry much discriminating information relevant to the particular class. Our learning algorithm takes a training set of the form $$\{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$ as input, where m is the number of training examples. Each $\mathbf{x_i}$ has ||F|| elements (where F is the set of input features) representing the values of the input features in example i. Each $\mathbf{y_i}$ has L elements, where L is the number of classes, $y_{il} = 1$ if example i is an instance of class l and $y_{il} = 0$ if example i is not an instance of class l. Our algorithm also requires as input the number of highest-correlation input features to be retained for each base classifier (n_l) for $l \in \{1, 2, ..., L\}$. Given these inputs, our algorithm operates as follows: - For each class $l \in \{1, 2, \dots, L\}$, - Compute the correlation between each feature and the output for class l. - Select n_l features having the highest correlation with the class l output. Call this set of features F_l . - Use a learning algorithm to realize the mapping from each new feature set (F_l) to the outputs. Call the resulting classifier f^l . Given a new example x, we classify it as follows: - For each classifier f^l in the ensemble $(l \in \{1, 2, ..., L\})$, - Calculate the output $f_k^l(x)$ for each class $k \in \{1, 2, \dots, L\}$. - For each class $k \in \{1, 2, \dots, L\}$, - Calculate $f_k^{ave}(x) = \sum_{l=1}^L f_k^l(x)$. - Return the class $K = argmax_k f_k^{ave}(x)$. The main advantage of input decimation over standard dimensionality reduction methods such as principal components analysis (PCA) is that input decimation selects features based on their correlation with the outputs. Cherkauer uses a similar feature selection method, but the feature subsets are selected by hand [15], whereas Bay [5] and Zheng and Webb [66] propose a method where the feature subsets are selected at random. In this paper, we report results on real datasets in which each decimated feature set had the same dimensionality (i.e., we chose a fixed number of highest-correlation inputs for each classifier) as ³This method may yield different feature subsets only when there are at least three classes. In a two-class problem, features strongly correlated with one class will be strongly anti-correlated with the other class, so the same features would be chosen for both classifiers. well as results with decimated feature sets of different dimensionality. We also present controlled experiments on synthetic datasets. As mentioned earlier, input decimation seeks to reduce the correlations among individual classifiers by using different subsets of input features, while methods such as bagging and boosting attempt to do so by choosing different subsets of training patterns. These facts imply that input decimation is orthogonal to pattern-based methods such as bagging and boosting, i.e., one can use input decimation in conjunction with those methods. We will not explore this point in this paper. ## 4 Experimental Results In this section, we present the results of input decimation on several synthetic and real datasets. In these experiments, for an L-class problem, we train L classifiers⁴, each of which uses some of the features having highest correlation with the presence or absence of one particular class. The results given in the tables are percentages correct and standard error on the test set averaged over 20 independent runs. As a standard against which to compare our input decimation results, we also trained a classifier on the full feature set (referred to as the "single classifier") and separately trained L copies of the same classifier and incorporated them into an ensemble average (referred to as the "original ensemble"). Because the neural networks in our original ensemble are given different random initial sets of weights, they do perform differently after training even though they are all trained with exactly the same training set. Indeed, the results in this paper show that the original ensemble is an interesting ensemble that often performs significantly better than each of its constituent classifiers. Additionally, comparing input-decimated ensembles with these original ensembles is the only way of directly testing the benefits of removing input features from the constituent classifiers. ## 4.1 Synthetic Data We tested input decimation on the following six synthetic datasets. - Set 1: - $-\,$ Three classes—one unimodal Gaussian per class. - 300 training patterns and 150 test patterns-100 training and 50 test patterns per class. ⁴In this article we use multi-layered perceptrons (MLP) trained with the backpropagation algorithm as our classifiers. The learning rates and momentum terms were chosen by trying values from 0 to 1 in increments of 0.05 and finding the settings that yielded the best results with a single neural network. The number of hidden units was selected by starting with five hidden units and trying more hidden units in increments of five until we got a locally optimal performance, i.e., we chose a number such that up to 20 more or 20 fewer hidden units led to worse performance than the chosen number. - 100 features per pattern where there are: - * 10 relevant features per class–each class's peak is a multivariate normal distribution in 10 independent dimensions distributed as $N(40,5^2)$. There are no features in common among the three classes' peaks. Therefore, there are 30 relevant features. - * 70 irrelevant features-distributed as U[-100, 100]. - Set 2: Same as Set 1, except that only 50 irrelevant features were added to the 30 relevant features, for a total of 80 features in the dataset. - Set 3: Same as Set 1, except that only 20 irrelevant features were added to the 30 relevant features, for a total of 50 features in the dataset. - Set 4: Same as Set 1, except that there are 1000 training examples and 500 testing examples per class—a total of 3000 training examples and 1500 testing examples. - Set 5: Same as Set 1, except that there is overlap among the relevant features for each class (e.g., classes one and two have three relevant features in common). We deliberately chose dataset 1 be favorable to input decimation. In particular, we decided to have a large number of features relative to the number of examples because we feel that input decimation works best in these situations where it can alleviate the curse of dimensionality. We also did not have any overlap among the relevant features for each class with the hope that input decimation would choose nonoverlapping feature subsets for each base classifier. We included a large number of completely irrelevant features to see how much they lead our algorithm astray, if at all. As mentioned earlier, we needed to have at least three classes—with two classes, features that are strongly correlated with one class are strongly anti-correlated with the other class, so the two base classifiers would get exactly the same features and there may not be significant correlation reduction. Datasets 2 and 3 were chosen as additional points of comparison to see how much completely irrelevant features affect our algorithm. We expected that those ensembles whose base classifiers use irrelevant features would perform better as the number of irrelevant features available in the dataset increases. This is because with more irrelevant features to choose from, the different base classifiers are more likely to have different irrelevant features, which would leave the base classifiers' performances the same but would decrease the correlations among them. We chose dataset 4 to have the same profile as dataset 1 except with more examples. On the one hand, we felt that input decimation would perform better for dataset 4 because with more training examples, we are less likely to have features that happen to be well-correlated with the outputs in the training set and not in the test set. The individual classifiers are likely to perform better on this dataset than in dataset 1. However, we felt that the correlations among the base classifiers would increase. We also felt that the original single neural networks and ensembles would perform better for this dataset than for dataset 1 because of the greater number of examples; therefore, we thought that the relative improvement through decimation would be less. Dataset 5 was chosen to have overlap among the features relevant to each class. We felt that input decimation would not
perform as well here as with dataset 1: the individual classifiers would perform comparably but the correlations would be higher due to the overlapping features. In the next subsections, we present our results for each dataset followed by our analysis. Table 1 provides the classification performance for single classifiers and ensembles on the full feature set⁵, along with the correlations among the individual classifiers in the ensemble. Note that the original ensembles always give some improvement over the individual classifiers in each case. In Tables 2-6, we provide the single classifier and ensemble results when only subsets of the feature set or principal components are used. The first column provides the dimensionality of the data (number of features per classifier), the second column specifies which dimensionality reduction method was used (input decimation or PCA), and the last column provides the average correlation among the classifiers in the ensemble. Table 1: Single Classifier and Ensemble Performance on the Full Feature Set | | Single | Ensemble | Corr. | |-------|-------------------------|---------------------|-------| | Set 1 | 84.267 ± 2.9394 | 88.333 ± 1.9720 | 0.678 | | Set 2 | 83.467 ± 3.1241 | 89.600 ± 2.0374 | 0.706 | | Set 3 | 84.633 ± 2.8005 | 89.500 ± 2.0535 | 0.726 | | Set 4 | 90.480 ± 0.6849 | 93.393 ± 0.4948 | 0.808 | | Set 5 | 78.500 ± 2.3273 | 84.633 ± 2.3710 | 0.676 | #### 4.1.1 Set 1 Table 2 presents the results for the first data set.⁶ Input decimation provided the best performance for subsets with 20 and 30 features. This is consistent with the data as there are 30 relevant features, out of which at least 10 are needed for each classifier. The 5 and 10 feature ensembles also performed fairly well, even though the single component classifiers performed poorly. In these cases, there is very little correlation among the individual classifiers, which accounts for the substantial improvements in performance due to the ensemble (see Equation 12). Note that in cases where more than 30 features were used, the performance of the ensemble declined with the addition of additional features, i.e., as more and more irrelevant features were taken into account. Indeed, for 30 or fewer features, input decimation significantly outperformed PCA while for 40 or more $^{^5\}mathrm{The}$ ensemble consists of 3 classifiers for all data sets. ⁶The single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning rate of 0.2 and a momentum term of 0.5. Table 2: Synthetic Dataset 1: Influence of Dimensionality on Ensemble Perfor- | | Single | Ensemble | Corr. | |--------------------------|--|--|---| | DF | 86.911 ± 2.157 | 91.733 ± 1.467 | 0.751 | | PCA | 86.422 ± 2.689 | 91.133 ± 1.634 | 0.769 | | $\overline{\mathrm{DF}}$ | 87.678 ± 2.510 | 92.333 ± 1.844 | 0.759 | | PCA | 85.778 ± 2.252 | 90.867 ± 1.416 | 0.754 | | DF | 89.500 ± 2.112 | 93.200 ± 1.470 | 0.783 | | PCA | 86.467 ± 2.409 | 91.300 ± 1.542 | 0.764 | | DF | 90.189 ± 1.865 | 93.4 ± 1.133 | 0.823 | | PCA | 86.744 ± 2.162 | 91.700 ± 0.954 | 0.787 | | DF | 91.322 ± 1.911 | 95.233 ± 0.851 | 0.811 | | PCA | 86.456 ± 2.566 | 90.733 ± 1.685 | 0.765 | | DF | 85.756 ± 2.523 | 95.033 ± 1.570 | 0.638 | | PCA | 86.445 ± 2.093 | 91.100 ± 1.480 | 0.784 | | $\overline{\mathrm{DF}}$ | 66.989 ± 3.165 | 93.967 ± 2.005 | 0.130 | | PCA | 85.656 ± 2.211 | 90.567 ± 1.354 | 0.783 | | $_{ m DF}$ | 66.333 ± 3.058 | 94.533 ± 2.050 | 0.126 | | PCA | 84.856 ± 3.544 | 88.733 ± 0.814 | 0.825 | | | PCA DF | $\begin{array}{cccc} \mathrm{DF} & 86.911 \pm 2.157 \\ \mathrm{PCA} & 86.422 \pm 2.689 \\ \mathrm{DF} & 87.678 \pm 2.510 \\ \mathrm{PCA} & 85.778 \pm 2.252 \\ \mathrm{DF} & 89.500 \pm 2.112 \\ \mathrm{PCA} & 86.467 \pm 2.409 \\ \mathrm{DF} & 90.189 \pm 1.865 \\ \mathrm{PCA} & 86.744 \pm 2.162 \\ \mathrm{DF} & 91.322 \pm 1.911 \\ \mathrm{PCA} & 86.456 \pm 2.566 \\ \mathrm{DF} & 85.756 \pm 2.523 \\ \mathrm{PCA} & 86.445 \pm 2.093 \\ \mathrm{DF} & 66.989 \pm 3.165 \\ \mathrm{PCA} & 85.656 \pm 2.211 \\ \mathrm{DF} & 66.333 \pm 3.058 \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | features, input decimation only had marginally higher performance. However, except for the 70-feature ensemble, all the input decimation ensembles provided statistically significant improvements over the original ensembles. Also, note that the single decimated networks with 20 and more features outperformed the original single classifier. This perhaps surprising result (as one might have expected only the ensemble performance to improve when using subsets of the features) is mainly due to the simplification of the learning tasks, which allows the classifiers to learn the mapping more efficiently. Interestingly, the correlation among classifiers does not decrease until a very small number of features remain. We attribute this to the removal of noise—removing noise increases the amount of information shared between the classifiers. Indeed, the correlation increases steadily as features are removed until we reach 30 features (which corresponds to the actual number of relevant features). After that point, removing features reduces the correlation and the individual classifier performances. However, the ensemble performance still remains high. This experiment clearly shows the trade-off presented in Equation 12: one can either increase individual classifier performance (as for DF with more than 30 features) or reduce the correlation among classifiers (as for DF with less than 20 features) to improve ensemble performance. Table 3: Synthetic Dataset 2: Influence of Dimensionality on Ensemble Perfor- | mances | | | | | |--------|--------------------------|-------------------------|--------------------|-------| | Dim. | | Single | Ensemble | Corr. | | 70 | DF | 84.767 ± 2.419 | 90.000 ± 1.955 | 0.717 | | | PCA | 84.422 ± 2.625 | 89.600 ± 1.902 | 0.729 | | 60 | $\overline{\mathrm{DF}}$ | 85.778 ± 3.197 | 91.533 ± 1.968 | 0.733 | | | PCA | 85.922 ± 2.724 | 90.533 ± 1.681 | 0.742 | | 50 | DF | 87.611 ± 2.532 | 92.233 ± 1.567 | 0.761 | | | PCA | 86.767 ± 2.370 | 91.033 ± 1.949 | 0.773 | | 40 | DF | 89.667 ± 2.193 | 93.700 ± 1.043 | 0.823 | | | PCA | 79.567 ± 2.416 | 88.333 ± 2.071 | 0.659 | | 30 | DF | 90.067 ± 2.508 | 94.500 ± 1.364 | 0.814 | | | PCA | 80.078 ± 2.502 | 90.667 ± 1.862 | 0.675 | | 20 | DF | 87.089 ± 2.094 | 95.467 ± 1.343 | 0.638 | | | PCA | 80.611 ± 2.353 | 90.267 ± 1.781 | 0.690 | | 10 | $\overline{\mathrm{DF}}$ | 67.356 ± 2.601 | 93.400 ± 2.054 | 0.153 | | | PCA | 80.111 ± 2.006 | 89.600 ± 1.890 | 0.714 | | 5 | $\overline{\mathrm{DF}}$ | 66.100 ± 3.038 | 90.733 ± 2.520 | 0.145 | | | PCA | 78.678 ± 2.057 | 88.333 ± 1.291 | 0.743 | #### 4.1.2 Set 2 Table 3 presents the results for the second data set which is obtained by reducing the number of irrelevant features (from 70 to 50) from the first dataset. As we described earlier, we expected that the performances of ensembles whose base classifiers used irrelevant features (40 or more inputs) would not be as good for this dataset as for the first dataset. As indicated earlier, we felt that, given the same number of irrelevant features, the individual decimated base classifiers for dataset 1 would perform comparably to those of dataset 2 but would have lower correlations among them, leading to superior ensemble performance. We did expect the decimated ensembles with close to the number of relevant features to perform significantly better than the original single classifier and ensemble. The decimated ensembles with 20, 30, and 40 features outperformed the original ensemble and PCA-based ensemble significantly, while the 10-feature ensemble performed marginally better. The remaining decimated ensembles provided results that were statistically similar to those of the original ensemble. Note that, just as it was for the first data set, in this case, the single classifiers with 20 or more features outperformed the single original classifier, demonstrating the improvement we can achieve through dimensionality reduction alone, if the original feature set is noisy. However, our first hypothesis involving comparisons with the performance on dataset 1 did not materialize. The performances of decimated ensembles with $^{^7{}m The}$ single classifier used was an MLP with a single hidden layer consisting of 65 units, trained using a learning rate of 0.2 and a momentum term of 0.5. too many features (10 or more of the irrelevant features, i.e., 40 or more total features) did perform slightly worse on dataset 2 than on dataset 1; however, this was not due to higher correlations among the base classifiers but rather slightly lower performances of the base classifiers. #### 4.1.3 Set 3 Table 4 presents the results for the third data set, which is obtained by reducing the number of irrelevant features (from 70 to 20) from the first dataset. That the original single classifier and ensemble perform better for this dataset
relative to dataset 1 (see Table 1) is not surprising, because with fewer irrelevant features, there is less noise to "overfit." Therefore in this dataset, the gains due to input decimation are smaller. Indeed only the 10-dimensional decimated ensemble significantly outperformed the original ensemble while the others provided only marginal improvements. Additionally, the ensemble with 40 features (10 irrelevant features) did not perform as well here as for the previous two datasets, which further demonstrates what we discussed in the previous section about each base classifier having to choose from a smaller pool of irrelevant features. Table 4: Synthetic Dataset 3: Influence of Dimensionality on Ensemble Perfor- | mances | | | | | |--------|--------------------------|-------------------------|--------------------|-------| | Dim. | | Single | Ensemble | Corr. | | 40 | DF | 86.478 ± 2.389 | 91.633 ± 2.060 | 0.747 | | | PCA | 87.222 ± 2.427 | 92.167 ± 1.412 | 0.760 | | 30 | $\overline{\mathrm{DF}}$ | 87.400 ± 2.826 | 92.333 ± 1.693 | 0.759 | | | PCA | 88.367 ± 2.370 | 92.200 ± 1.621 | 0.790 | | 20 | DF | 84.133 ± 2.461 | 90.933 ± 1.583 | 0.660 | | | PCA | 89.411 ± 2.016 | 93.000 ± 1.498 | 0.834 | | 10 | DF | 68.878 ± 2.810 | 94.167 ± 2.804 | 0.204 | | | PCA | 91.056 ± 1.909 | 93.633 ± 0.977 | 0.870 | | 5 | DF | 65.889 ± 3.045 | 90.933 ± 2.255 | 0.123 | | | PCA | 92.211 ± 1.195 | 93.700 ± 1.064 | 0.894 | #### 4.1.4 Set 4 Table 5 presents the results for the fourth data set, which is obtained from the first dataset by increasing the number of examples in the training and test sets by tenfold.⁹ The performance improvements (relative to the original classifiers) due to decimation are smaller here than they were for the previous datasets as we hypothesized; however, all the decimated ensembles with 20 or more features still ⁸The single classifier used was an MLP with a single hidden layer consisting of 45 units, trained using a learning rate of 0.2 and a momentum term of 0.5. ⁹The single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning rate of 0.2 and a momentum term of 0.5. significantly outperformed the original ensemble. In this case, single decimated classifiers with 20 or more features do not outperform the original classifiers to the same extent as they did for dataset 1. This is because with the increase in the number of samples, the original classifier has a better chance to extract the "signal" from the "noise" and thus is less affected by the irrelevant features. Also, in this experiment the PCA based ensembles performed well and were only beaten by input-decimated ensembles for subsets of 20 and 30 features. Furthermore, the first few principal components found by PCA carry good discriminating information in this case, explaining why there is such little variability between the performance of the PCA ensembles with varying numbers of features. Although the behavior of the correlation (as the number of features changes) is very similar to that observed for Set 1, the actual correlation values are higher across the board. This is not surprising since with more data, the similarities between the classifiers are amplified. Table 5: Synthetic Dataset 4: Influence of Dimensionality on Ensemble Perfor- | mances | | | | | |--------|--------------------------|-------------------------|--------------------|-------| | Dim. | | Single | Ensemble | Corr. | | 70 | $\overline{\mathrm{DF}}$ | 91.732 ± 0.614 | 94.107 ± 0.357 | 0.847 | | | PCA | 92.078 ± 0.668 | 94.267 ± 0.125 | 0.851 | | 60 | $\overline{\mathrm{DF}}$ | 92.257 ± 0.565 | 94.433 ± 0.414 | 0.853 | | | PCA | 92.213 ± 0.601 | 94.440 ± 0.480 | 0.854 | | 50 | $\overline{\mathrm{DF}}$ | 92.820 ± 0.513 | 94.780 ± 0.326 | 0.872 | | | PCA | 93.078 ± 0.488 | 94.660 ± 0.477 | 0.869 | | 40 | $\overline{\mathrm{DF}}$ | 93.356 ± 0.634 | 95.040 ± 0.438 | 0.885 | | | PCA | 93.299 ± 0.479 | 94.830 ± 0.299 | 0.880 | | 30 | DF | 94.153 ± 0.516 | 95.683 ± 0.381 | 0.903 | | | PCA | 93.581 ± 0.366 | 94.886 ± 0.328 | 0.893 | | 20 | DF | 91.482 ± 0.895 | 97.380 ± 0.372 | 0.786 | | | PCA | 93.968 ± 0.519 | 95.039 ± 0.416 | 0.905 | | 10 | $\overline{\mathrm{DF}}$ | 66.587 ± 0.660 | 93.113 ± 2.998 | 0.130 | | | PCA | 94.408 ± 0.429 | 95.113 ± 0.298 | 0.924 | | 5 | $\overline{\mathrm{DF}}$ | 65.298 ± 4.806 | 89.463 ± 6.453 | 0.107 | | | PCA | 94.520 ± 0.403 | 95.007 ± 0.288 | 0.942 | #### 4.1.5 Set 5 Table 6 presents the results for the fifth data set, which is similar to the first dataset but there is overlap among the relevant features for the classes. Because of this overlap, this feature set has fewer total relevant features and thus it constitutes a more difficult problem (as indicated by the results in Table 1). This is also demonstrated by the similarity among the correlations for all the $^{^{10}}$ The single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning rate of 0.2 and a momentum term of 0.5. different subset sizes. Unlike with the previous four data sets, the correlation does not go down drastically here for a small subset, because the overlap among the classes forces the classifiers to remain "coupled" to one another. Table 6: Synthetic Dataset 5: Influence of Dimensionality on Ensemble Perfor- | mances | | | | | |--------|--------------------------|-------------------------|--------------------|-------| | Dim. | | Single | Ensemble | Corr. | | 70 | $_{ m DF}$ | 81.778 ± 2.792 | 87.567 ± 2.331 | 0.720 | | | PCA | 79.822 ± 2.733 | 86.100 ± 2.173 | 0.706 | | 60 | DF | 83.811 ± 2.704 | 89.333 ± 2.404 | 0.749 | | | PCA | 80.422 ± 2.689 | 85.567 ± 2.036 | 0.735 | | 50 | DF | 85.056 ± 2.605 | 90.233 ± 1.664 | 0.796 | | | PCA | 81.056 ± 2.406 | 86.467 ± 1.335 | 0.729 | | 40 | DF | 86.333 ± 2.433 | 91.100 ± 2.122 | 0.802 | | | PCA | 79.933 ± 2.685 | 84.933 ± 1.389 | 0.732 | | 30 | DF | 86.844 ± 2.155 | 91.467 ± 1.771 | 0.795 | | | PCA | 79.878 ± 2.625 | 85.600 ± 1.254 | 0.732 | | 20 | DF | 86.967 ± 2.632 | 92.267 ± 1.806 | 0.783 | | | PCA | 79.656 ± 2.798 | 84.500 ± 1.590 | 0.743 | | 10 | $\overline{\mathrm{DF}}$ | 85.756 ± 2.825 | 98.133 ± 0.980 | 0.707 | | | PCA | 79.122 ± 2.249 | 85.133 ± 1.910 | 0.755 | | 5 | $_{ m DF}$ | 81.956 ± 4.192 | 95.467 ± 1.614 | 0.706 | | | PCA | 70.856 ± 2.427 | 78.200 ± 1.507 | 0.683 | In spite of these difficulties, input decimation ensembles perform extremely well. Indeed, they significantly outperform both the original ensemble and PCA ensembles on all but a few subsets where they only provide marginal improvements. Furthermore the input-decimated single classifiers also outperform their original and PCA counterparts for all but the 60 and 70 feature subsets. This experiment demonstrates that when there is overlap among classes, class information is crucial. Without this vital information, PCA cannot provide any statistically significant improvements over the original classifier and ensembles. ## 4.2 UCI/Proben1 Datasets To complement the experiments discussed above, we also selected three datasets from the UCI/PROBEN1 benchmarks [8, 51]: The Gene database from the PROBEN1 (i.e., using train/validate/test split from PROBEN1), and the Splice junction gene sequences and Satellite Image database (Statlog version) from the UCI Machine Learning Repository. In these experiments, just as in those described above, our classifiers consist of MLPs. ### 4.2.1 Data Description and Full Feature Set Performance In this section we provide a brief description of the data sets and the individual classifiers. The Gene dataset has 120 input features and three classes [45, 51]. We selected component MLPs with a single hidden layer of 20 units, a learning rate of 0.2 and a momentum term of 0.8. The Splice data consists of 60 input features and three classes [8]. Here we selected MLPs with a single hidden layer composed of 120 units, a learning rate of 0.05, and a momentum term of 0.1. The Satellite Image data has 36 input features and 6 classes [8]. We selected MLPs with a single hidden layer of 50 units, and a learning rate and momentum term of 0.5. Table 7: Average Accuracy of Original Network and Ensembles | $\operatorname{Dataset}$ | Single | Ensemble | $\operatorname{Correlation}$ | |--------------------------|-------------------------|-------------------|------------------------------| | Gene | $83.417 \pm .796$ | $86.418 \pm .342$ | 0.7910 | | Splice | $84.722 \pm .534$ | $85.372 \pm .631$ | 0.9523 | | Satellite | $87.785 \pm .685$ | $89.010 \pm .273$ | 0.7263 | Table 7 provides the classification performance for single classifiers and ensembles on the full feature set for all three datasets¹¹. For the Gene data, the average ensemble was significantly more accurate than the single network, while for the Satellite Image and Splice data sets, the ensemble was only marginally more accurate. #### 4.2.2 Fixed Input-Decimated Ensembles This section describes experiments that mirror those above where we investigate the performance of single classifiers and ensembles with "fixed" subsets of the feature set (i.e., each base classifier sees the *same* number of features). For the Gene and Splice datasets, we use increments of 10 features up to the full set, while for the Satellite Image data we use increments of 9 features. The classification performance for both the single classifiers and the ensembles on all subsets, averaged over 20 runs, along with the corresponding correlation values (i.e., correlation among classifiers in the ensemble) are given in Tables 8-10
below. In case of the Gene data, the average ensembles with 20, 30, and 40 inputs are significantly more accurate than both the original network ensembles described in the previous section and their PCA counterparts. Note also that the performances of the PCA-based ensembles vary arbitrarily as the number of principal components changes, while the performances of the feature-based ensembles are more stable. This is consistent with the fact that principal components are not necessarily good discriminative features, and eliminating particular principal components have unpredictable effects on the classification performance. In the Splice data experiments, *all* the decimated feature-based ensembles significantly outperformed both the original ensemble and the PCA-based ensembles. What is particularly notable in this case is that a reduction of dimensionality based on PCA has a strong negative impact on the classification $^{^{11}}$ The ensemble consists of 3 classifiers for the Gene and Splice datasets and of 6 classifiers for the Satellite Image dataset. Table 8: Gene Data: Influence of Dimensionality on Ensemble Performances | Dim. | | Single | Ensemble | Corr. | |------|--------------------------|-------------------------|--------------------|-------| | 110 | $\overline{\mathrm{DF}}$ | 83.636 ± 0.930 | 86.482 ± 0.851 | 0.800 | | | PCA | 76.595 ± 1.086 | 85.876 ± 0.529 | 0.394 | | 100 | DF | 83.623 ± 1.165 | 86.419 ± 0.731 | 0.791 | | | PCA | 76.166 ± 0.561 | 85.574 ± 0.837 | 0.457 | | 90 | DF | 82.947 ± 1.041 | 86.091 ± 0.584 | 0.788 | | | PCA | 81.761 ± 1.222 | 85.839 ± 0.885 | 0.729 | | 80 | $\overline{\mathrm{DF}}$ | 83.632 ± 1.216 | 86.457 ± 1.015 | 0.794 | | | PCA | 83.316 ± 0.894 | 86.368 ± 0.530 | 0.781 | | 40 | $\overline{\mathrm{DF}}$ | 84.237 ± 0.897 | 87.276 ± 0.671 | 0.805 | | | PCA | 65.737 ± 2.141 | 80.958 ± 0.806 | 0.240 | | 30 | DF | 83.422 ± 0.836 | 88.045 ± 0.617 | 0.762 | | | PCA | 76.784 ± 1.645 | 84.767 ± 0.919 | 0.523 | | 20 | DF | 85.754 ± 0.955 | 89.546 ± 0.548 | 0.734 | | | PCA | 67.192 ± 0.905 | 83.001 ± 0.697 | 0.665 | Table 9: Satellite Image Data: Influence of Dimensionality on Ensemble Perfor- | mances | | | | | |--------|-----|-------------------------|---------------------|-------| | Dim. | | Single | $\mathbf{Ensemble}$ | Corr. | | 27 | DF | 86.512 ± 0.764 | 86.482 ± 0.851 | 0.923 | | | PCA | 87.863 ± 0.572 | 88.820 ± 0.154 | 0.897 | | 18 | DF | 82.645 ± 1.164 | 86.419 ± 0.731 | 0.856 | | | PCA | 84.877 ± 1.031 | 89.510 ± 0.242 | 0.910 | | 9 | DF | 70.679 ± 0.838 | 86.091 ± 0.584 | 0.395 | | | PCA | 83.574 ± 0.756 | 89.035 ± 0.252 | 0.948 | performance. With 20 principal components for example, the performance of the single classifiers drops by 7 %, whereas the performance of the DF single classifier increases by 3 %. The improvement of the performance of the single classifiers due to decimation is an initially surprising aspect of these experiments (unlike the synthetic data sets, one does not expect to find too many "irrelevant" features in these real datasets). However, an analysis shows that the inputs that were decimated were in fact providing "noise" to the classifier. The curse of dimensionality is affecting us here—theoretically, the learning algorithm should be able to figure out which features are noisy and give them less importance; however, in practice, this is difficult to do with limited training data. In case of the Satellite Image data however, the input-decimated ensemble with 27 features was the only one that did not perform significantly worse than the single neural network and the original ensemble. This is the data set with the lowest dimensionality, and shows two things: (i) in order to take advantage of input decimation, the initial dimensionality has to be high; and (ii) if there are Table 10: Splice Data: Influence of Dimensionality on Ensemble Performances | Dim. | | Single | Ensemble | Corr. | |------|-----|--------------------|--------------------|-------| | 50 | DF | 85.152 ± 0.619 | 86.896 ± 0.312 | 0.857 | | | PCA | 83.230 ± 0.868 | 85.014 ± 0.767 | 0.861 | | 40 | DF | 86.460 ± 0.607 | 88.532 ± 0.523 | 0.855 | | | PCA | 82.286 ± 0.824 | 84.939 ± 0.556 | 0.838 | | 30 | DF | 87.880 ± 0.928 | 90.329 ± 0.833 | 0.859 | | | PCA | 81.276 ± 0.726 | 84.073 ± 0.355 | 0.805 | | 20 | DF | 88.310 ± 0.666 | 92.380 ± 0.714 | 0.792 | | | PCA | 79.263 ± 0.548 | 82.493 ± 0.495 | 0.785 | | 10 | DF | 84.669 ± 0.561 | 92.342 ± 0.737 | 0.719 | | | PCA | 78.109 ± 0.542 | 80.066 ± 0.400 | 0.816 | features that have significant meaning, they need to be included in the feature set regardless of their correlation to the particular output. A potential solution to this problem is to select "wild card" features based on correlation with all the classes and include them in each decimated subset. PCA significantly outperformed input decimation on this dataset. We believe the reason for this is the following. We observed that consecutive groups of four features in the satellite image data set correspond to spectral values for a given pixel. In examining the eigenvalues and eigenvectors, we found that the highest eigenvalue was 91.6% of the sum of the eigenvalues, and the corresponding eigenvector was a simple linear combination of the four spectral values across all the pixels. In this case, the higher principal components provide good discriminative features. ### 4.2.3 Variable Input-Decimated Ensembles With the UCI/Proben1 datasets there is no reason to assume that each of the classifiers in an ensemble should have the same number of features. Therefore we have performed experiments where we allowed the subsets to vary in size. To select the number of features for each class, we first plotted the correlation between each feature and that class in decreasing order. We found consecutive features with the largest differences in correlation by inspection and set break points between them. We then selected the feature subsets with the most natural break points as the significant features. The experiments reported below show the potential of using variable numbers of features. We are currently investigating more formal methods to automate the selection of the number of features for each classifier. Table 11 provides the classification performance for single classifiers and ensembles on the decimated feature sets for the three data sets. The second column provides the number of features present in each of the classifiers (i.e., for Gene the first classifier in the ensemble had 11 features, the second had 8 while the third had 14). For the Gene database, the variable input-decimated ensembles improved upon the fixed subset input decimation results (which themselves Table 11: Variable Input Ensembles. | | | _ | | | |-------------------------|------------------|--------------------|--------------------|--------| | Dataset | Features/Class | Single | Ensemble | Corr. | | Gene | 11-8-14 | 82.211 ± 0.857 | 90.757 ± 0.615 | 0.6334 | | Satellite | 27-27-9-18-27-27 | 80.483 ± 0.890 | 88.370 ± 0.005 | 0.6361 | | Splice | 13-10-21 | 87.833 ± 0.641 | 92.371 ± 0.335 | 0.7719 | were an improvement over the original ensemble). For the Splice dataset, the improvements over the original ensemble are even greater, although the results are statistically equivalent to those obtained with fixed subsets of 10 and 20 features. As for the satellite image dataset, variable input-decimated ensembles improved upon the fixed input-decimated ensembles, but still fell short of the original ensembles (for the same reasons that we highlighted in Section 4.2.2). ## 5 Discussion and Conclusions This paper discusses input decimation, a dimensionality reduction method for ensemble classification. We present experimental results demonstrating that input decimation is a promising machine learning method that yields superior results by combining the strengths of dimensionality reduction and ensembles. Specifically, we show that, in many cases, the single decimated classifiers outperform the single original classifier (trained on the full feature set), which demonstrates that simply eliminating irrelevant features can improve performance. In addition, eliminating irrelevant features in each of many classifiers using different relevance criteria (in this case, relevance with respect to different classes) often yields significant improvement in ensemble performance, as seen by comparing our decimated ensembles to the original ensembles. Selecting the features using class label information also provided significant performance gains over PCA-based ensembles. Furthermore, using subsets of the original features instead of new features allows human operators to gain more insight into how each classifier and ensemble makes its decisions, alleviating a serious difficulty in interpreting results in large data mining problems [20, 49]. Through our tests on real and synthetic datasets, we show certain characteristics that datasets need to have to fully benefit from input decimation. Namely, we show that input decimation performs best when there are a large number of features (e.g., where it's likely that there will be irrelevant features) and when the number of training examples is relatively small (i.e., where it's difficult to properly learn all the parameters in a classifier based on the full feature set). In these cases, decimation removes the extraneous features, thereby reducing noise and reducing the number of training examples needed to produce a meaningful model (i.e., alleviating the curse of dimensionality). An interesting observation is that input decimation works well *in spite* of our rather crude method of choosing the relevant features (i.e.,
statistical correlation). One reason why this simple method succeeds is that we have greatly simplified the relevance criterion: only the relevance of the features to *a single* class is taken into consideration, rather than the discriminatory ability across all classes. Nevertheless, we are currently extending this work in three directions: considering cross-correlations among the features; investigating mutual information based relevance criteria; and incorporating global relevance into the selection process. We are confident that a fully developed input-decimated ensemble method will provide an easy to use, understandable and robust method for addressing high-dimensional classification problems that are common in data mining. **Acknowledgments.** Part of this work was done while Nikunj Oza was visiting NASA Ames Research Center. He was also partially supported by a Schlumberger Foundation Fellowship. ## References - [1] K. Al-Ghoneim and B. V. K. Vijaya Kumar. Learning ranks with neural networks (Invited paper). In *Applications and Science of Artificial Neural Networks*, *Proceedings of the SPIE*, volume 2492, pages 446–464, April 1995. - [2] K. M. Ali and M. J. Pazzani. On the link between error correlation and error reduction in decision tree ensembles. Technical Report 95-38, Department of Information and Computer Science, University of California, Irvine, 1995. - [3] R. Battiti. Using mutual information for selecting features in supervised neural net learning. *IEEE Transactions on Neural Networks*, 5:4:537–550, July 1994. - [4] R. Battiti and A. M. Colla. Democracy in neural nets: Voting schemes for classification. *Neural Networks*, 7(4):691–709, 1994. - [5] S. D. Bay. Combining nearest neighbor classifiers through multiple feature subsets. In *Proc. 15th ICML*, pages 415–425. Morgan Kaufmann, 1998. - [6] J.A. Benediktsson, J.R. Sveinsson, O.K. Ersoy, and P.H. Swain. Parallel consensual neural networks with optimally weighted outputs. In *Proceedings of the World Congress on Neural Networks*, pages III:129–137. INNS Press, 1994. - [7] C. M. Bishop. *Neural Networks for Pattern Recognition*. Oxford University Press, New York, 1995. - and [8] C. Blake, Ε. Keogh, C.J. Merz. UCI repos-(URL: itory machine learning databases. 1999. http://www.ics.uci.edu/~mlearn/MLRepository.html). - [9] A. Blum and P. Langley. Selection of relevant features and examples in machine learning. *Artificial Intelligence*, 97:245–272, 1997. - [10] K. D. Bollacker and J. Ghosh. Linear feature extractors based on mutual information. In *Proceedings of the 13th International Conference on Pattern Recognition*, pages pp. IV:720–724, August 1996. - [11] L. Breiman. Stacked regression. Technical Report 367, Department of Statistics, University of California, Berkeley, 1993. - [12] L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University of California, Berkeley, 1994. - [13] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. - [14] C. E. Brodley and P. Smyth. Applying classification algorithms in practice. *Statistics and Computing*, 7:45–56, 1997. - [15] K. J. Cherkauer. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, pages 15–21, 1996. - [16] D. de Ridder and R. P. W. Duin. Sammon's mapping using neural networks: A comparison. *Pattern Recognition Letters*, 18:1307–1316, 1997. - [17] T.G. Dietterich. Machine learning research: Four current directions. AI Magazine, 18(4):97–136, 1998. - [18] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. *Journal of AI Research*, 2:263–286, 1995. - [19] P. Domingos. Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 11:227–253, 1997. - [20] P. Domingos. Knowledge discovery via multiple models. *Intelligent Data Analysis*, 2:187–202, 1998. - [21] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other ensemble methods. *Neural Computation*, 6(6):1289–1301, 1994. - [22] H. Drucker, R. Schapire, and P. Simard. Improving performance in neural networks using a boosting algorithm. In S.J. Hanson, J. D. Cowan, and C. L. Giles, editors, *Advances in Neural Information Processing Systems-5*, pages 42–49. Morgan Kaufmann, 1993. - [23] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press, 1996. - [24] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In *Proc. 13th ICML*, pages 148–156, Bari, Italy, 1996. Morgan Kaufmann. - [25] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth. Statistical themes and lessons for data mining. *Data Mining and Knowledge Discovery*, 1(1):11–28, 1997. - [26] L. K. Hansen and P. Salamon. Neural network ensembles. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(10):993–1000, 1990. - [27] S. Hashem and B. Schmeiser. Approximating a function and its derivatives using MSE-optimal linear combinations of trained feedforward neural networks. In *Proceedings of the Joint Conference on Neural Networks*, volume 87, pages I:617–620, New Jersey, 1993. - [28] T. Heskes. Balancing between bagging and bumping. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems-9, pages 466-472. M.I.T. Press, 1997. - [29] T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple classifier systems. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(1):66-76, 1994. - [30] A. Hyvarinen. Survey on independent component analysis. *Neural Computing Surveys*, 2:94–128, 1999. - [31] Robert Jacobs. Method for combining experts' probability assessments. Neural Computation, 7(5):867–888, 1995. - [32] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In *Proceedings of the International Conference on Machine Learning (ICML-94)*, pages 121–129, July 1994. - [33] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986. - [34] M. I. Jordan and R. A. Jacobs. Hierarchical mixture of experts and the EM algorithm. *Neural Computation*, 6:181–214, 1994. - [35] N. Kambhatla and T. K. Leen. Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems-6, pages 152–153. Morgan Kaufmann, 1994. - [36] N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. *Neural Computation*, 9:1493, 1997. - [37] R. Kohavi and G. H. John. Wrappers for feature subset selection. *Artificial Intelligence Journal*, 1-2:273–324, 1997. - [38] D. Koller and M. Sahami. Toward optimal feature selection. In *Proceedings* of the 13th International Conference on Machine Learning, pages 284–292, 1996. - [39] S. Kumar, M. Crawford, and J. Ghosh. A versatile framework for labelling imagery with a large number of classes. In *Proceedings of the International Joint Conference on Neural Networks (IJCNN-99)*, 1999. - [40] P. Langley. Selection of relevant features in machine learning. In *Proceedings of the AAAI Fall Symposium on Relevance*, 1994. - [41] E. Levin, N. Tishby, and S. A. Solla. A statistical approach to learning and generalization in layered neural networks. *Proc. IEEE*, 78(10):1568–74, Oct 1990. - [42] W.P. Lincoln and J. Skrzypek. Synergy of clustering multiple back propagation networks. In D. Touretzky, editor, *Advances in Neural Information Processing Systems-2*, pages 650–657. Morgan Kaufmann, 1990. - [43] R. Meir. Bias, variance, and the combination of estimators; the case of least linear squares. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, *Advances in Neural Information Processing Systems-7*, pages 295–302. M.I.T. Press, 1995. - [44] C. J. Merz. A principal component approach to combining regression estimates. *Machine Learning*, 36:9–32, 1999. - [45] M. O. Noordewier, G. G. Towell, and J. W. Shavlik. Training knowledge-based neural networks to recognize genes in DNA sequences. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural Information Processing Systems-3, pages 530-536. Morgan Kaufmann, 1991. - [46] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press, Letchworth, England, 1983. - [47] E. Oja. Principal components, minor components, and linear neural networks. *Neural Networks*, 5:927–936, 1992. - [48] M. Partridge and R. A. Calvo. Fast dimensionality reduction and simple pca. *Intelligent Data Analysis*, 2:203–214, 1998. - [49] M. Pazzani. Comprehensible knowledge discovery: gaining insight from data. In *First Federal Data Mining Conference and Exposition*, pages 73–82, Washington, DC, 1997. - [50] M.P. Perrone and L. N. Cooper. When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone, editor, *Neural Networks for Speech and Image Processing*, chapter 10. Chapmann-Hall, 1993. - [51] Lutz Prechelt. PROBEN1 A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.de. - [52] J.R. Quinlan. *C4.5: Programs for Machine Learning*. Morgan Kaufman, San Mateo, California, 1992. - [53] M.D. Richard and R.P. Lippmann. Neural network classifiers estimate Bayesian a posteriori probabilities. *Neural Computation*, 3(4):461–483, 1991. - [54] G. Rogova. Combining the results of several neural network classifiers. Neural Networks, 7(5):777–781, 1994. - [55] D. W. Ruck, S. K. Rogers, M. E. Kabrisky, M. E. Oxley, and B. W. Suter. The multilayer Perceptron as an approximation to a Bayes optimal discriminant function. *IEEE Transactions on Neural Networks*, 1(4):296–298, 1990.
- [56] J.W. Sammon Jr. A nonlinear mapping for data structure analysis. *IEEE transactions on Computers*, 18:401–409, 1969. - [57] A. J. J. Sharkey. (editor). Connection Science: Special Issue on Combining Artificial Neural Networks: Ensemble Approaches, 8(3 & 4), 1996. - [58] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. *Pattern Recognition*, 29(2):341–348, February 1996. - [59] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers. Connection Science, Special Issue on Combining Artificial Neural Networks: Ensemble Approaches, 8(3 & 4):385-404, 1996. - [60] K. Tumer and J. Ghosh. Classifier combining through trimmed means and order statistics. In *Proceedings of the International Joint Conference on Neural Networks*, pages 757–762, Anchorage, Alaska, 1998. - [61] K. Tumer and N. C. Oza. Decimated input ensembles for improved generalization. In Proc. of the Int. Joint Conf. on Neural Networks (IJCNN-99), 1999. - [62] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992. - [63] N. Wyse, R. Dubes, and A.K. Jain. A critical evaluation of intrinsic dimensionality algorithms. In E. Gelsema and L.N. Kanal, editors, *Pattern Recognition in Practice2*, pages 415–425. Morgan Kaufmann, 1980. - [64] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. *IEEE Transactions* on Systems, Man and Cybernetics, 22(3):418–435, May 1992. - [65] J.-B. Yang and M. G. Singh. An evidential reasoning approach for multiple-attribute decision making with uncertainty. *IEEE Transactions on Systems*, *Man, and Cybernetics*, 24(1):1–19, 1994. [66] Z. Zheng and G.I. Webb. Stochastic attribute selection committees. In *Proc. of the 11th Australian Joint Conf. on AI (AI'98)*, pages 321–332, 1998.